

Motivation

- Textual data and RNA-seq data have surprisingly similar representations
- Latent topics have biological interpretations
- Being able to model biological phenomena through topic modeling allows for useful dimensionality reduction and direct biological interpretation of topics

High Level Process

1. Acquire RNA-seq data as Gene-Counts

Sample	Ccl22	Gpx3	Nrsn1	Fbx113	•••
Sample1	4	3	2	1	
Sample3	2	1	0	5	

2. Apply Topic Model (LDA or CTM)

- Note that gene-count format is very similar to wordcounts commonly used in text processing problems
- Use LDA and CTM document-topic distributions as dimensionality reduction
- Determine top genes associated with each topic
- Investigate correlations between topics, if using CTM
- Determine whether correlations correspond to biological phenomena

3. Use new features for classification

- Use LDA or CTM for dimensionality reduction
- Fit a classifier to low-dimensional data (Logistic Regression, SVM, etc.)
- Compare classification accuracy to the same, using PCA-based features and original features

Key Contributions

- Implemented the inference algorithm for a correlated topic model
- Wrote multicore implementation to parallelize variational inference
- Analyzed classification accuracy using several biological datasets with differing degrees of variability in samples
- Compared results for generated topics and documentation classification against LDA and PCA (implemented elsewhere)

Investigating Gene Expression Using Correlated Topic Models and Latent Dirichlet Allocation Ankit Gupta, Harvard University

Re

Experiment 1: Proof of Concept: 40 males, 30 females, sex-link LDA: Produces Y-chromosome topic, and X-chromosome topic CTM: Produces several Y-chromosome topics and several X-chro topics, with negative correlation between X and Y chromosome

Experiment 2: Rat Gene Relationships: 320 rat samples, vario

Method	Organ Prediction Accuracy
Original Features	.98
CTM Features	.93
LDA Features	.875
PCA Features	.89

Interesting topics:

- "Blood-related" gen
- "Heart-related" gene
- "Kidney-related" get
- "Lipid-related" gene
- "Sugar-related" gene
- Positive covariance between kidney and blood related genes, a negative between kidney and heart
- Need to investigate if it can perform this well on more closely samples (see Experiment 3)

Correlated Topic Model Overview

E-step: Variational Inference on Each Document

$$(\eta_{1:K}, z_{1:N} \mid \lambda_{1:K}, \nu_{1:K}^2, \phi_{1:N}) = \prod_{i=1}^{K} q(\eta_i \mid \lambda_i, \nu_i^2) \prod_{n=1}^{N} q(z_n \mid \phi_n)$$

inequality, we can bound the log probability of a document as

Using Jensen's inequality, we can bound the log probability of a document as $\log p(w_{1:N}|\mu,\Sigma,\beta)$

$$\log p(\eta | \mu, \Sigma)] + \sum_{n=1}^{N} E_q [\log p(z_n | \eta)] + \sum_{n=1}^{N} E_q [\log p(w_n | z_n, \beta)] + H(\theta)$$

$$\hat{\zeta} = \sum_{i=1}^{K} \exp(\lambda_i + \frac{1}{2}v_i^2)$$
$$\hat{\phi}_{n,i} \propto \exp(\lambda_i) \beta_{i,w_n}$$

where ζ was a new variational parameter introduced to calculate gradients.

For the others, we will need to use a gradient-based minimizer, where the gradients are

$$\frac{dL}{d\lambda} = -\Sigma^{-1}(\lambda - \mu) + \sum_{n=1}^{N} \phi_{n,1:K} - \left(\frac{N}{\zeta}\right) \exp(\lambda + \frac{1}{2}\nu^2)$$
$$\frac{dL}{d\nu_i^2} = -\frac{1}{2}\Sigma_{ii}^{-1} - \frac{N}{2\zeta} \exp\left(\lambda_i + \frac{1}{2}\nu_i^2\right) + \frac{1}{2\nu_i^2}$$

Since this process occurs separately on each document in an iteration of the E-step, this was parallelized and run on 64-core machines.

ked genes	Experiment 3: Identifying Mouse Neurons Subtyp					
omosome topics	Method	Subtype Prediction Accuracy	• In differentiating			
	Original Features	.93	CTM performs pc			
ous organs	CTM Features	.69	• No clear topics fo			
	LDA Features	.83 .89	 Future experiment will allow for modulations 			
	PCA Features					
es enes es es and related	 Key Takeaways 1) CTM performs well at classification tasks when c are fairly highly varied 2) CTM produces topics and correlations that appear correspond with biological phenomena 3) CTM performs poorly relative to LDA when class relatively similar, such as subtypes of neurons 4) Slow speed of CTM presents drawback relative to 					

